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Online combinatorial optimization

The online linear optimization framework whose decision set C ⊂ Rn
+ is

some combinatorial set.
For each round t = 1, 2, . . . ,T :

Player Environment

ct ∈ C ⊂ Rn
+

ℓt ∈ [0, 1]n

Goal

Minimize α-regret RT (α) with α ≥ 1.

RT (α) =
T∑
t=1

ct · ℓt − αmin
c∈C

T∑
t=1

c · ℓt
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Comparison of the previous works and our contribution

Algorithm Approx. oracle
# of oracle calls

per trial
Regret

Kalai et al., ’09 Any O(T ) O(T 1/2)

Garber ’17 Any O(n2 lnT ) O(T 2/3)

Garber ’17 Any O(n2
√
T lnT ) O(T 1/2)

Fujita et al., ’13 relax-based O(n2D2
∞ ln(n)/ϵ2) O(T 1/2)

This work relax-based O(D2
∞ ln(n)/ϵ2) O(T 1/2)

D∞ = max{∥c∥∞ | c ∈ C}.
Our work assumes the same setting as the one in Fujita et al.
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The main idea of Fujita et al., ’13

Idea.

1 Run an online algorithm over relax(C) ⊃ C to predict x ∈ relax(C),
2 Project x back onto C.

x

relax(C)

ℓ

Questions.

How to project onto C?
What condition is required to achieve low regret?
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A näıve idea: use an approx. oracle

For the projection, they assume the following oracle:

Definition (Relax-based approximation Oracle)

R : Rn
+ → C is said to be a relax-based α-approximation oracle for

(relax(C), C) with relax(C) ⊃ C if

∀ℓ ∈ Rn
+, R(ℓ) · ℓ ≤ α min

x∈relax(C)
x · ℓ.

x

R(ℓ)

relax(C)

ℓ

1 Compute x ∈ argminx∈relax(C) x · ℓ.
2 Choose c ∈ C such that

c · ℓ ≤ αx · ℓ.
Note:
ℓ is revealed after choosing c ∈ C, so
one cannot use R directly.
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Metarounding

Definition (Metarounding)

Algorithm M is said to be an α-metarounding for (C, relax(C)) if M,
when given x ∈ relax(C) as input, outputs a vector c ∈ C randomly s.t.

∀ℓ ∈ Rn
+, EM(x)[c] · ℓ ≤ αx · ℓ.

The above is equivalent to EM(x)[c] ≤ αx .

Theorem (Carr et al., ’02)

relax-based approx. oracle R exists =⇒ metarounding M exists.

R. Mitsuboshi, K. Hatano, E. Takimoto An Improved Metarounding 2023/11/11 6 / 12



Metarounding

Definition (Metarounding)

Algorithm M is said to be an α-metarounding for (C, relax(C)) if M,
when given x ∈ relax(C) as input, outputs a vector c ∈ C randomly s.t.

∀ℓ ∈ Rn
+, EM(x)[c] · ℓ ≤ αx · ℓ.

The above is equivalent to EM(x)[c] ≤ αx .

Theorem (Carr et al., ’02)

relax-based approx. oracle R exists =⇒ metarounding M exists.

R. Mitsuboshi, K. Hatano, E. Takimoto An Improved Metarounding 2023/11/11 6 / 12



Construct an online algorithm with Metarounding

If there exists an online algorithm for relax(C), we can construct the one
for C by fusing metarounding M:

OLO
over relax(C) Environment

M

Player

1. pt ∈ relax(C)
2. ct ∈ C

3. ℓt ∈ [0, 1]n

Theorem (Fujita et al., ’13)

Metarounding M for (C, relax(C)) exists
=⇒ the player above guarantees RT (α) = O(Regret bound for OLO).

The above theorem implies RT (α) = O(
√
T ).
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The idea in [Fujita et al., ’13]

Estimate the approximation ratio α by formulating metarounding as an LP.

Definition (Recap: Metarounding)

M is an α-metarounding for (C, relax(C)) if M, when given x ∈ relax(C)
as input, outputs a vector c ∈ C randomly s.t.

∀ℓ ∈ Rn
+, E[M(x)] · ℓ ≤ αx · ℓ.

Primal

min
β,λ

β s.t.
∑
c∈C

λcc ≤ αx ,

∥λ∥1 = 1, λ ≥ 0.

Dual

max
γ,ℓ

γ s.t. ℓ · c ≥ γ, ∀c ∈ C,

ℓ · x = 1, ℓ ≥ 0.

They proposed an algorithm that solves the dual problem.

The algorithm is designed based on SoftBoost [Warmuth et al., ’07].

The algorithm terminates in O(n2D2
∞ ln(n)/ϵ2) rounds.

R. Mitsuboshi, K. Hatano, E. Takimoto An Improved Metarounding 2023/11/11 8 / 12



The idea in [Fujita et al., ’13]

Estimate the approximation ratio α by formulating metarounding as an LP.

Definition (Recap: Metarounding)

M is an α-metarounding for (C, relax(C)) if M, when given x ∈ relax(C)
as input, outputs a vector c ∈ C randomly s.t.

∀ℓ ∈ Rn
+, E[M(x)] · ℓ ≤ αx · ℓ.

Primal

min
β,λ

β s.t.
∑
c∈C

λcc ≤ αx ,

∥λ∥1 = 1, λ ≥ 0.

Dual

max
γ,ℓ

γ s.t. ℓ · c ≥ γ, ∀c ∈ C,

ℓ · x = 1, ℓ ≥ 0.

They proposed an algorithm that solves the dual problem.

The algorithm is designed based on SoftBoost [Warmuth et al., ’07].

The algorithm terminates in O(n2D2
∞ ln(n)/ϵ2) rounds.

R. Mitsuboshi, K. Hatano, E. Takimoto An Improved Metarounding 2023/11/11 8 / 12



The idea in [Fujita et al., ’13]

Estimate the approximation ratio α by formulating metarounding as an LP.

Definition (Recap: Metarounding)

M is an α-metarounding for (C, relax(C)) if M, when given x ∈ relax(C)
as input, outputs a vector c ∈ C randomly s.t.

∀ℓ ∈ Rn
+, E[M(x)] · ℓ ≤ αx · ℓ.

Primal

min
β,λ

β s.t.
∑
c∈C

λcc ≤ αx ,

∥λ∥1 = 1, λ ≥ 0.

Dual

max
γ,ℓ

γ s.t. ℓ · c ≥ γ, ∀c ∈ C,

ℓ · x = 1, ℓ ≥ 0.

They proposed an algorithm that solves the dual problem.

The algorithm is designed based on SoftBoost [Warmuth et al., ’07].

The algorithm terminates in O(n2D2
∞ ln(n)/ϵ2) rounds.

R. Mitsuboshi, K. Hatano, E. Takimoto An Improved Metarounding 2023/11/11 8 / 12



Our approach

Similar to ERLPBoost [Warmuth et al., ’08], we add an entropy-like regularizer.

max
γ,ℓ

γ−1

η

n∑
i=1

xiℓi ln
xiℓi
1/n

s.t. c · ℓ ≥ γ, ∀c ∈ C,

x · ℓ = 1, ℓ ≥ 0.

Starting from C0 = ∅, for each round k = 1, 2, . . . ,K ,

1 Solve the above problem over Ck to obtain the optimal solution ℓk .

2 Update Ck+1 = Ck ∪ {ck+1}, where ck+1 = R(ℓk).

Theorem (Convergence guarantee)

The above algo. finds an ϵ-approx. solution in O(D2
∞ ln(n)/ϵ2) rounds.
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Experiment

Randomly generated set-cover instance.

n = 20, varying the set sizes over {200, 400, 600, 800, 1000}.
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Experiment

Randomly generated set-cover instance.

n = 20 and |C| = 100.
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Conclusion

We proposed a metarounding algorithm which converges with rate
O(D2

∞ ln(n)/ϵ2).

Our algorithm is faster than the previous one under the same setting.

Questions.

Does the proposed approach applicable in Bandit setting?

Is the iteration bound optimal?
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