Online combinatorial linear optimization via a Frank-Wolfe based metarounding algorithm

Ryotaro Mitsuboshi^{1,2} Kohei Hatano^{1,2} Eiji Takimoto¹

¹Kyushu University

²RIKEN AIP

2023/11/11

1/12

The online linear optimization framework whose decision set $C \subset \mathbb{R}^n_+$ is some combinatorial set.

For each round $t = 1, 2, \ldots, T$:

Goal

Minimize α -regret $R_T(\alpha)$ with $\alpha \geq 1$.

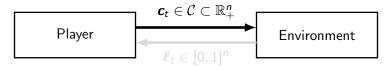
$$R_T(\alpha) = \sum_{t=1}^T \boldsymbol{c}_t \cdot \boldsymbol{\ell}_t - \alpha \min_{\boldsymbol{c} \in \mathcal{C}} \sum_{t=1}^T \boldsymbol{c} \cdot \boldsymbol{\ell}_t$$

R. Mitsuboshi, K. Hatano, E. Takimoto

2/12

The online linear optimization framework whose decision set $\mathcal{C} \subset \mathbb{R}^n_+$ is some combinatorial set.

For each round $t = 1, 2, \ldots, T$:



Goal

Minimize α -regret $R_T(\alpha)$ with $\alpha \geq 1$.

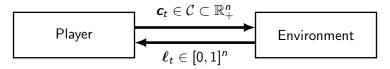
$$R_T(\alpha) = \sum_{t=1}^T \boldsymbol{c}_t \cdot \boldsymbol{\ell}_t - \alpha \min_{\boldsymbol{c} \in \mathcal{C}} \sum_{t=1}^T \boldsymbol{c} \cdot \boldsymbol{\ell}_t$$

R. Mitsuboshi, K. Hatano, E. Takimoto

2/12

The online linear optimization framework whose decision set $C \subset \mathbb{R}^n_+$ is some combinatorial set.

For each round $t = 1, 2, \ldots, T$:



Goal

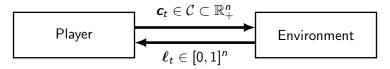
Minimize α -regret $R_T(\alpha)$ with $\alpha \geq 1$.

$$R_T(\alpha) = \sum_{t=1}^T \boldsymbol{c}_t \cdot \boldsymbol{\ell}_t - \alpha \min_{\boldsymbol{c} \in \mathcal{C}} \sum_{t=1}^T \boldsymbol{c} \cdot \boldsymbol{\ell}_t$$

R. Mitsuboshi, K. Hatano, E. Takimoto

The online linear optimization framework whose decision set $C \subset \mathbb{R}^n_+$ is some combinatorial set.

For each round $t = 1, 2, \ldots, T$:



Goal

Minimize α -regret $R_T(\alpha)$ with $\alpha \geq 1$.

$$R_{T}(\alpha) = \sum_{t=1}^{T} \boldsymbol{c}_{t} \cdot \boldsymbol{\ell}_{t} - \frac{\alpha}{\boldsymbol{c} \in \mathcal{C}} \sum_{t=1}^{T} \boldsymbol{c} \cdot \boldsymbol{\ell}_{t}$$

Algorithm	Approx. oracle	# of oracle calls per trial	Regret
Kalai et al., '09	Any	O(T)	$O(T^{1/2})$
Garber '17	Any	$O(n^2 \ln T)$	$O(T^{2/3})$
Garber '17	Any	$O(n^2\sqrt{T}\ln T)$	$O(T^{1/2})$
Fujita et al., '13	relax-based	$O(n^2 D_\infty^2 \ln(n)/\epsilon^2)$	$O(T^{1/2})$
This work	relax-based	$O(D_\infty^2 \ln(n)/\epsilon^2)$	$O(T^{1/2})$

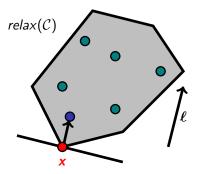
• $D_{\infty} = \max\{\|\boldsymbol{c}\|_{\infty} \mid \boldsymbol{c} \in \mathcal{C}\}.$

• Our work assumes the same setting as the one in Fujita et al.

The main idea of Fujita et al., '13

Idea.

- **Q** Run an online algorithm over $relax(\mathcal{C}) \supset \mathcal{C}$ to predict $\mathbf{x} \in relax(\mathcal{C})$,
- 2 Project \boldsymbol{x} back onto \mathcal{C} .



Questions.

- How to project onto C?
- What condition is required to achieve low regret?

A naïve idea: use an approx. oracle

For the projection, they assume the following oracle:

Definition (Relax-based approximation Oracle)

 $\mathcal{R}: \mathbb{R}^n_+ \to \mathcal{C}$ is said to be a relax-based α -approximation oracle for $(relax(\mathcal{C}), \mathcal{C})$ with $relax(\mathcal{C}) \supset \mathcal{C}$ if

$$orall \ell \in \mathbb{R}^n_+, \quad \mathcal{R}(\ell) \cdot \ell \leq lpha \min_{\mathbf{x} \in relax(\mathcal{C})} \mathbf{x} \cdot \ell.$$



Compute $\mathbf{x} \in \arg\min_{\mathbf{x} \in relax(\mathcal{C})} \mathbf{x} \cdot \boldsymbol{\ell}$.

Choose
$$oldsymbol{c} \in \mathcal{C}$$
 such that

$$\boldsymbol{c} \cdot \boldsymbol{\ell} \leq \alpha \boldsymbol{x} \cdot \boldsymbol{\ell}.$$

Note:

 ℓ is revealed after choosing $\boldsymbol{c} \in \mathcal{C}$, so one cannot use \mathcal{R} directly.

Definition (Metarounding)

Algorithm \mathcal{M} is said to be an α -metarounding for $(\mathcal{C}, relax(\mathcal{C}))$ if \mathcal{M} , when given $\mathbf{x} \in relax(\mathcal{C})$ as input, outputs a vector $\mathbf{c} \in \mathcal{C}$ randomly s.t.

$$\forall \boldsymbol{\ell} \in \mathbb{R}^n_+, \quad \mathbb{E}_{\mathcal{M}(\boldsymbol{x})}[\boldsymbol{c}] \cdot \boldsymbol{\ell} \leq \alpha \boldsymbol{x} \cdot \boldsymbol{\ell}.$$

The above is equivalent to $\mathbb{E}_{\mathcal{M}(\mathbf{x})}[\mathbf{c}] \leq \alpha \mathbf{x}$.

Theorem (Carr et al., '02)

relax-based approx. oracle ${\mathcal R}$ exists \implies metarounding ${\mathcal M}$ exists.

Definition (Metarounding)

Algorithm \mathcal{M} is said to be an α -metarounding for $(\mathcal{C}, relax(\mathcal{C}))$ if \mathcal{M} , when given $\mathbf{x} \in relax(\mathcal{C})$ as input, outputs a vector $\mathbf{c} \in \mathcal{C}$ randomly s.t.

$$\forall \boldsymbol{\ell} \in \mathbb{R}^n_+, \quad \mathbb{E}_{\mathcal{M}(\boldsymbol{x})}[\boldsymbol{c}] \cdot \boldsymbol{\ell} \leq \alpha \boldsymbol{x} \cdot \boldsymbol{\ell}.$$

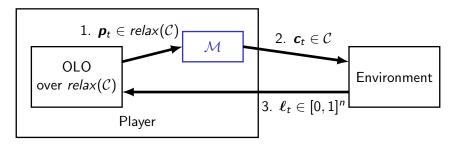
The above is equivalent to $\mathbb{E}_{\mathcal{M}(\mathbf{x})}[\mathbf{c}] \leq \alpha \mathbf{x}$.

Theorem (Carr et al., '02)

relax-based approx. oracle \mathcal{R} exists \implies metarounding \mathcal{M} exists.

Construct an online algorithm with Metarounding

If there exists an online algorithm for relax(C), we can construct the one for C by fusing metarounding \mathcal{M} :



Theorem (Fujita et al., '13)

Metarounding \mathcal{M} for $(\mathcal{C}, relax(\mathcal{C}))$ exists

 \implies the player above guarantees $R_T(\alpha) = O(\text{Regret bound for OLO}).$

The above theorem implies $R_T(\alpha) = O(\sqrt{T})$.

イロト イボト イヨト イヨト

The idea in [Fujita et al., '13]

Estimate the approximation ratio α by formulating metarounding as an LP.

Definition (Recap: Metarounding)

 \mathcal{M} is an α -metarounding for $(\mathcal{C}, relax(\mathcal{C}))$ if \mathcal{M} , when given $\mathbf{x} \in relax(\mathcal{C})$ as input, outputs a vector $\mathbf{c} \in \mathcal{C}$ randomly s.t.

 $\forall \boldsymbol{\ell} \in \mathbb{R}^n_+, \quad \mathbb{E}[\mathcal{M}(\boldsymbol{x})] \cdot \boldsymbol{\ell} \leq \alpha \boldsymbol{x} \cdot \boldsymbol{\ell}.$

$\begin{array}{ll} \displaystyle \underset{\beta, \boldsymbol{\lambda}}{\min} \beta & \text{s.t.} & \displaystyle \sum_{\boldsymbol{c} \in \mathcal{C}} \lambda_{\boldsymbol{c}} \boldsymbol{c} \leq \alpha \boldsymbol{x}, \\ & \|\boldsymbol{\lambda}\|_{1} = 1, \ \boldsymbol{\lambda} \geq \boldsymbol{0}. \end{array} \end{array} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \mathsf{Dual} \\ \displaystyle \max_{\gamma, \ell} \gamma & \text{s.t.} & \ell \cdot \boldsymbol{c} \geq \gamma, \quad \forall \boldsymbol{c} \in \mathcal{C}, \\ & \ell \cdot \boldsymbol{x} = 1, \ \ell \geq \boldsymbol{0}. \end{array}$

• They proposed an algorithm that solves the dual problem.

- The algorithm is designed based on SoftBoost [Warmuth et al., '07].
- The algorithm terminates in $O(n^2 D_{\infty}^2 \ln(n)/\epsilon^2)$ rounds.

イロト イヨト イヨト ・

2023/11/11

The idea in [Fujita et al., '13]

Estimate the approximation ratio α by formulating metarounding as an LP.

Definition (Recap: Metarounding)

 \mathcal{M} is an α -metarounding for $(\mathcal{C}, relax(\mathcal{C}))$ if \mathcal{M} , when given $\mathbf{x} \in relax(\mathcal{C})$ as input, outputs a vector $\mathbf{c} \in \mathcal{C}$ randomly s.t.

 $\forall \boldsymbol{\ell} \in \mathbb{R}^n_+, \quad \mathbb{E}[\mathcal{M}(\boldsymbol{x})] \cdot \boldsymbol{\ell} \leq \alpha \boldsymbol{x} \cdot \boldsymbol{\ell}.$

 $\begin{array}{c|c} \mathsf{Primal} & & \mathsf{Dual} \\ \min_{\beta, \lambda} \beta & \text{s.t.} & \sum_{\boldsymbol{c} \in \mathcal{C}} \lambda_{\boldsymbol{c}} \boldsymbol{c} \leq \alpha \boldsymbol{x}, \\ \|\boldsymbol{\lambda}\|_1 = 1, \ \boldsymbol{\lambda} \geq \boldsymbol{0}. \end{array} \end{array} \begin{array}{c} \mathsf{Dual} \\ \max_{\gamma, \boldsymbol{\ell}} \gamma & \text{s.t.} \quad \boldsymbol{\ell} \cdot \boldsymbol{c} \geq \gamma, \quad \forall \boldsymbol{c} \in \mathcal{C}, \\ \boldsymbol{\ell} \cdot \boldsymbol{x} = 1, \ \boldsymbol{\ell} \geq \boldsymbol{0}. \end{array}$

• They proposed an algorithm that solves the dual problem.

- The algorithm is designed based on SoftBoost [Warmuth et al., '07].
- The algorithm terminates in $O(n^2 D_{\infty}^2 \ln(n)/\epsilon^2)$ rounds.

イロト イヨト イヨト ・

The idea in [Fujita et al., '13]

Estimate the approximation ratio α by formulating metarounding as an LP.

Definition (Recap: Metarounding)

 \mathcal{M} is an α -metarounding for $(\mathcal{C}, relax(\mathcal{C}))$ if \mathcal{M} , when given $\mathbf{x} \in relax(\mathcal{C})$ as input, outputs a vector $\mathbf{c} \in \mathcal{C}$ randomly s.t.

 $\forall \boldsymbol{\ell} \in \mathbb{R}^n_+, \quad \mathbb{E}[\mathcal{M}(\boldsymbol{x})] \cdot \boldsymbol{\ell} \leq \alpha \boldsymbol{x} \cdot \boldsymbol{\ell}.$

$\begin{array}{c|c} \mathbf{Primal} \\ \min_{\beta, \boldsymbol{\lambda}} \beta & \text{s.t.} & \sum_{\boldsymbol{c} \in \mathcal{C}} \lambda_{\boldsymbol{c}} \boldsymbol{c} \leq \alpha \boldsymbol{x}, \\ \|\boldsymbol{\lambda}\|_{1} = 1, \ \boldsymbol{\lambda} \geq \boldsymbol{0}. \end{array} \end{array} \begin{array}{c} \mathbf{Dual} \\ \max_{\gamma, \boldsymbol{\ell}} \gamma & \text{s.t.} & \boldsymbol{\ell} \cdot \boldsymbol{c} \geq \gamma, \quad \forall \boldsymbol{c} \in \mathcal{C}, \\ \boldsymbol{\ell} \cdot \boldsymbol{x} = 1, \ \boldsymbol{\ell} \geq \boldsymbol{0}. \end{array}$

- They proposed an algorithm that solves the dual problem.
- The algorithm is designed based on SoftBoost [Warmuth et al., '07].
- The algorithm terminates in $O(n^2 D_\infty^2 \ln(n)/\epsilon^2)$ rounds.

Similar to ERLPBoost [Warmuth et al., '08], we add an entropy-like regularizer.

$$\max_{\gamma,\ell} \gamma - \frac{1}{\eta} \sum_{i=1}^{n} x_i \ell_i \ln \frac{x_i \ell_i}{1/n} \quad \text{s.t.} \quad \boldsymbol{c} \cdot \boldsymbol{\ell} \ge \gamma, \quad \forall \boldsymbol{c} \in \mathcal{C}$$
$$\boldsymbol{x} \cdot \boldsymbol{\ell} = 1, \quad \boldsymbol{\ell} \ge \boldsymbol{0}.$$

Starting from $C_0 = \emptyset$, for each round $k = 1, 2, \dots, K$,

Solve the above problem over C_k to obtain the optimal solution ℓ_k.
Update C_{k+1} = C_k ∪ {c_{k+1}}, where c_{k+1} = R(ℓ_k).

Theorem (Convergence guarantee)

The above algo. finds an ϵ -approx. solution in ${\cal O}(D^2_\infty\ln(n)/\epsilon^2)$ rounds.

- 4 回 ト 4 三 ト 4 三 ト

Similar to ERLPBoost [Warmuth et al., '08], we add an entropy-like regularizer.

$$\max_{\gamma,\ell} \gamma - \frac{1}{\eta} \sum_{i=1}^{n} x_i \ell_i \ln \frac{x_i \ell_i}{1/n} \quad \text{s.t.} \quad \boldsymbol{c} \cdot \boldsymbol{\ell} \ge \gamma, \quad \forall \boldsymbol{c} \in \mathcal{C},$$
$$\boldsymbol{x} \cdot \boldsymbol{\ell} = 1, \quad \boldsymbol{\ell} \ge \boldsymbol{0}.$$

Starting from $C_0 = \emptyset$, for each round $k = 1, 2, \dots, K$,

() Solve the above problem over C_k to obtain the optimal solution ℓ_k .

② Update
$$C_{k+1} = C_k \cup \{c_{k+1}\}$$
, where $c_{k+1} = \mathcal{R}(\ell_k)$.

I heorem (Convergence guarantee)

The above algo. finds an ϵ -approx. solution in ${\cal O}(D^2_\infty \ln(n)/\epsilon^2)$ rounds.

- 4 同 ト 4 三 ト - 4 三 ト - -

Similar to ERLPBoost [Warmuth et al., '08], we add an entropy-like regularizer.

$$\max_{\gamma,\ell} \gamma - \frac{1}{\eta} \sum_{i=1}^{n} x_i \ell_i \ln \frac{x_i \ell_i}{1/n} \quad \text{s.t.} \quad \boldsymbol{c} \cdot \boldsymbol{\ell} \ge \gamma, \quad \forall \boldsymbol{c} \in \mathcal{C},$$
$$\boldsymbol{x} \cdot \boldsymbol{\ell} = 1, \quad \boldsymbol{\ell} \ge \boldsymbol{0}.$$

Starting from $C_0 = \emptyset$, for each round $k = 1, 2, \dots, K$,

() Solve the above problem over C_k to obtain the optimal solution ℓ_k .

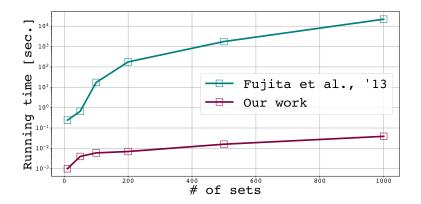
2 Update
$$\mathcal{C}_{k+1} = \mathcal{C}_k \cup \{\boldsymbol{c}_{k+1}\}$$
, where $\boldsymbol{c}_{k+1} = \mathcal{R}(\boldsymbol{\ell}_k)$.

Theorem (Convergence guarantee)

The above algo. finds an ϵ -approx. solution in $O(D_{\infty}^2 \ln(n)/\epsilon^2)$ rounds.

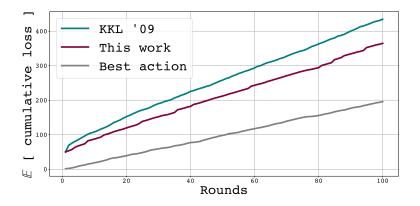
Experiment

- Randomly generated set-cover instance.
- *n* = 20, varying the set sizes over {200, 400, 600, 800, 1000}.



Experiment

- Randomly generated set-cover instance.
- n = 20 and |C| = 100.



- We proposed a metarounding algorithm which converges with rate $O(D_{\infty}^2 \ln(n)/\epsilon^2)$.
- Our algorithm is faster than the previous one under the same setting.

Questions.

- Does the proposed approach applicable in Bandit setting?
- Is the iteration bound optimal?