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Background and motivation

Consider the optimization problems of the form:

min
x

f (x) subject to Ax ≥ b,

x ∈ X ⊂ Rn,

where A ∈ {0, 1}m×n, b ∈ {0, 1}m, f : Rn → R is an arbitrary function,
and X represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.
Parallel to the development of computers, m becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.
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Extended formulation

A class of methods that reduces the number of constraints by slightly
increasing the number of variables.

Original (2-dim. space)

2 variables,
6 constraints.

Ext. form. (3-dim. space)

3 variables,
5 constraints.
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Sketch

Original formulation

A x ≥ b

min
x
f (x)

s.t. Ax ≥ b,
x ⊂ X

Construct NZDD
representation

Each path
corresponds to a
constraint in Ax ≥ b.

Establish
Extended formulation

A′ x

y

≥ b′

min
x
f (x)

s.t. A′
[
x
y

]
≥ b′,

x ⊂ X
Hopefully, the number of constraints significantly decreases,
while the number of variables slightly increases.
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Related work and our contribution

Bergman et al. represent a feasible region by ZDD and reduce a
discrete optimization problem to the shortest path problem over the
ZDD[Bregman et al., ’16].

Fujita et al. emulate AdaBoostV[Rätsch et al., ’05] over an NZDD[Fujita et al., ’20].

Our contribution

Generates an extended formulation algorithmically.

Input: optimization problem with lineaer constraints.
Output: an equiv. optimization problem with fewer constraints.

our method can solve the continuous optimization problem.

Kurokawa et al. Extended formulations via DD [COCOON 2023] 5 / 15



Non-deterministic Zero-suppressed Decision Diagram

A data structure that represents a subset family.

Definition (NZDD [Fujita et al., ’13])

An NZDD G is a quadruple (V ,E ,Σ, ψ) where

(V ,E ) is a DAG with a single root and single leaf,

Σ is the ground set,

ψ : E → 2Σ labels each edge e ∈ E with a subset ψ(e) ⊂ Σ
s.t. ∀ root-leaf path P ⊂ E , ∀e1, e2 ∈ P, ψ(e1) ∩ ψ(e2) = ∅.
G represents the subset family {

⋃
e∈P ψ(e) | P is a root-leaf path}

Ex. ∅ {a}
{d}

{c}

{d}

{b}

{b, c}

The left NZDD represents the family
{{a, b, c}, {b}, {b, c , d}, {c , d}}.
The red path represents {b, c , d}.
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Our approach (1/3)

Convert the constraints to the subset family of indices.
We have linear constraints Ax ≥ b, where A ∈ {0, 1}m×n and b ∈ {0, 1}m.
Let ai · x ≥ bi be the ith row of Ax ≥ b.

1 Pick a constraint ai · x ≥ bi .
Ex. x1 + x2 + x4 ≥ 1.

2 Construct a vector ci :=
[
ai bi

]
∈ {0, 1}n+1.

Ex. ci =
[
1 1 0 1 1

]
.

3 Collect the non-zero indices
Ix(c) = {j ∈ [n + 1] | cj = 1}.
Ex. Ix(ci ) = {1, 2, 4, 5}.

ℓ

u

v

r

{1}
{1, 2}

{5} ∅
{4, 5}

{3}

At this point, we have C = {Ix(ci ) | ci =
[
ai bi

]
, i ∈ [m]}.

Now we construct an NZDD that represents C.
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Our approach (2/3)

Establish an extended formulation from an NZDD.
We can reproduce the original constraints Ax ≥ b.

1 Define variables {sv | v ∈ V }.
2 For each edge (p, q) ∈ E ⊂ V × V , define a

constraint sp +
∑

i∈ψ((p,q)) sgn(i)xi ≥ sq, where
sgn : [n + 1] → {±1} is the function s.t.
sgn(i) = 1 ⇐⇒ i ̸= n + 1.
Ex.

1 0 0 0 0 1 0 −1 0
1 1 0 0 0 1 −1 0 0
0 0 1 0 0 0 −1 1 0
0 0 0 0 −1 0 0 1 −1
0 0 0 0 0 0 0 1 −1
0 0 0 1 −1 0 1 0 −1


︸ ︷︷ ︸

=:A′



x1
...
x5
sr
su
sv
sℓ


≥ 0

ℓ

u

v

r

{1}
{1, 2}

{5} ∅
{4, 5}

{3}

Ex.
sr + x1 + x2 ≥ su,

su + x4 − x5 ≥ sℓ.
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Our approach (3/3)

Consider the opposite direction.

If x satisfies Ax ≥ b, ∃s ∈ RV
+ s.t. A′

[
x
s

]
≥ 0.

Let x be a vector satisfying original constraints Ax ≥ b.

1 For each edge e ∈ E , assign weight∑
i∈ψ(e) sgn(i)xi .

2 For each vertex v ∈ V , set sv to the shortest
path length from root to v .

3 The resulting vector s ∈ RV
+ satisfies

A′
[
x
s

]
≥ 0

ℓ

u

v

r

{1}
{1, 2}

{5} ∅
{4, 5}

{3}

Satisfying Ax ≥ b ⇐⇒ the corresponding path length ≥ 0
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Main result

Theorem

Let A′
[
x
s

]
≥ 0′ be the constraints constructed from Ax ≥ b. Then,

the constraints represent the same feasible region in terms of x .
One can find the optimal solution to the original problem from the
compressed one.

Let G = (V ,E ,Σ,Ψ) be the NZDD for the
compressed problem.

# of constraints: O(|E |),
# of variables: O(n + |V |).

Thus, constructing a small NZDD in the
sense the number of edges highly reduces
the constraints.

ℓ

u

v

r

{1}
{1, 2}

{5} ∅
{4, 5}

{3}
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Construction of NZDD

No good algorithms known to construct a concise NZDD from a
given subset family.

ZCOMP1 [Toda, ’15], a tool for constructing ZDDs is available.

Currently, we use the following procedure:

1 Construct a ZDD by ZCOMP.

2 Contract edges to remove all nodes with 1 indegree or 1 outdegree.
(Heuristics)

1http://www.sd.is.uec.ac.jp/toda/code/zcomp.html
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Experiment: NZDD construction

# of variables n = 25.

Each row of the linear constraints has 10 non-zero entries.

m ZCOMP (sec.) Heuristics (sec.) Total (sec.)

4× 105 0.39 1.02 1.41
8× 105 0.76 1.38 2.14
12× 105 1.08 1.41 2.49
16× 105 1.36 1.10 2.46
20× 105 1.60 0.33 1.93
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Experiment: Artificial dataset

The number of variables n = 25, in which 13 take continuous values
and 12 take discrete ones.

The number of constraints m = k × 105, where k ∈ {4, 8, 12, 16, 20}.

0.5 1.0 1.5
# of constraints 1e6

103

Mem. consumption [MB]

0.5 1.0 1.5
# of constraints 1e6

102

103

Computation time [sec]

mip nzdd_mip
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Experiment: Real dataset

Solves L1-norm regularized soft margin optimization problem.

The # of constraints equals to the # of variables.

Cannot reduce the # of constraints by our extended formulation.
Solves an approximate problem.
We verified its effectiveness by measuring test loss.

The dataset is from LIBSVM2.

a9a art-1e5 real-sim w8a HIGGS
Datasets

10 1

100
101
102
103

Ti
me

 [
se
c]

Computation time

nzdd_naive
naive

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Conclusion

Proposed a general algorithm to generate an extended formulation
from a given linear constraints.

Experimental results demonstrate its effectiveness.

Sometimes the construction time for an NZDD is problematic.

Are there any effective construction for NZDDs?
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