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Background and motivation

Consider the optimization problems of the form:
min f(x) subject to Ax > b,
X
xe X CR",

where A € {0,1}™*", b e {0,1}™, f : R" — R is an arbitrary function,
and X represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.
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X
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where A € {0,1}™*", b e {0,1}™, f : R" — R is an arbitrary function,
and X represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.
Parallel to the development of computers, m becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.
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Extended formulation

A class of methods that reduces the number of constraints by slightly
increasing the number of variables.

@ Original (2-dim. space)
e 2 variables,
e 6 constraints.

e Ext. form. (3-dim. space)

e 3 variables,
e 5 constraints.
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Original formulation

A x| >

mxlnf(x)
s.t. Ax > b,
xCX
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Original formulation

A x| 2

mxlnf(x)
s.t. Ax > b,
xCX

Kurokawa et al.

Construct NZDD
representation

O,

Y

Each path
corresponds to a
constraint in Ax > b.
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Original formulation

A x| 2

mxlnf(x)
s.t. Ax > b,
xCX

Construct NZDD
representation

O,

Y

Each path
corresponds to a
constraint in Ax > b.

Establish
Extended formulation

« JH:=H

mxlnf(x)
sit. A [x] > b,
y

xCX

Hopefully, the number of constraints significantly decreases,
while the number of variables slightly increases.
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Related work and our contribution

@ Bergman et al. represent a feasible region by ZDD and reduce a
discrete optimization problem to the shortest path problem over the
ZDD[Bregman et al., '16].

@ Fujita et al. emulate AdaBoostV/rstsch et al., 105 over an NZDDirujita et al., 20].

Our contribution
@ Generates an extended formulation algorithmically.

Input: optimization problem with lineaer constraints.
Output: an equiv. optimization problem with fewer constraints.

@ our method can solve the continuous optimization problem.
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Non-deterministic Zero-suppressed Decision Diagram

A data structure that represents a subset family.
Definition (NZDD [Fujita et al., '13])

An NZDD G is a quadruple (V, E, X, 1) where
e (V,E) is a DAG with a single root and single leaf,

@ 2 is the ground set,

@ 1 : E — 2% labels each edge e € E with a subset 1)(e) C ¥
s.t. V root-leaf path P C E, Ve, e € P,v(e1) NY(ex) = 0.

@ G represents the subset family {{J.cp(e) | P is a root-leaf path}

v

The left NZDD represents the family
{{a, b, c},{b},{b,c,d},{c,d}}.

The red path represents {b, c,d}.
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Our approach (1/3)

Convert the constraints to the subset family of indices.

We have linear constraints Ax > b, where A € {0,1}"*" and b € {0,1}".
Let a; - x > b; be the ith row of Ax > b.
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Our approach (1/3)

Convert the constraints to the subset family of indices.
We have linear constraints Ax > b, where A € {0,1}"*" and b € {0,1}".
Let a; - x > b; be the ith row of Ax > b.

@ Pick a constraint a; - x > b;.
Ex. x{ +x0 + x4 > 1.
@ Construct a vector ¢; := [a; b;] € {0,1}"L,
Ex.¢;=[1 1 0 1 1].
© Collect the non-zero indices
Ix(c) = {j € [n+1] | g = 1}.
Ex. Ix(c)) = {1,2,4,5}.

At this point, we have C = {Ix(¢;) | ¢; = [a; bi],i € [m]}.
Now we construct an NZDD that represents C.
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Our approach (2/3)

Establish an extended formulation from an NZDD.
We can reproduce the original constraints Ax > b.
@ Define variables {s, | v € V}.

@ For each edge (p,q) € E C V x V, define a ¢
constraint Sp + > icy((p,q)) S8R(1)Xi = Sq, where 1 1,2
sgn : [n+ 1] — {£1} is the function s.t.

sgn(i)=1 < i#n+1.
Ex. -
i 0o -1 07| {5}

1000 0]1
1100 0]1 -1 0 0
0010 0|0 -1 1 0 X5 >0
0000 —-1{0 0 1 -1 Sl =7 Ex.
0000 O|0 O 1 -1 Su sr+ X1+ x2 > sy,
0001 —1{0 1 0 —1]]|% su+xa — x5 > sp.
~ St
=A’

Kurokawa et al. Extended formulations via DD [COCOON 2023] 8/15



Our approach (3/3)

Consider the opposite direction.
If x satisfies Ax > b, ds € RK sit. A [)s(] > 0.

Let x be a vector satisfying original constraints Ax > b.

@ For each edge e € E, assign weight

Zi€¢(e) Sgn(i)x,-. r
@ For each vertex v € V, set s, to the shortest (1} 1,2}
path length from root to v.
© The resulting vector s € RK satisfies v
5
s1 0

Satisfying Ax > b <= the corresponding path length > 0
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Main result

X .
o Let A s > 0’ be the constraints constructed from Ax > b. Then,

the constraints represent the same feasible region in terms of x.

@ One can find the optimal solution to the original problem from the
compressed one.
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Main result

X .
o Let A s > 0’ be the constraints constructed from Ax > b. Then,

the constraints represent the same feasible region in terms of x.

@ One can find the optimal solution to the original problem from the
compressed one.

Let G = (V,E,X, V) be the NZDD for the
compressed problem. r

e # of constraints: O(|E]), 1

@ # of variables: O(n+ |V]).
Thus, constructing a small NZDD in the
sense the number of edges highly reduces {5}
the constraints.
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Construction of NZDD

@ No good algorithms known to construct a concise NZDD from a
given subset family.

® ZCOMP! [rods, 151, a tool for constructing ZDDs is available.
Currently, we use the following procedure:
@ Construct a ZDD by ZCOMP.

@ Contract edges to remove all nodes with 1 indegree or 1 outdegree.
(Heuristics)

"http://www.sd.is.uec.ac.jp/toda/code/zcomp.html
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Experiment: NZDD construction

@ # of variables n = 25.

@ Each row of the linear constraints has 10 non-zero entries.

m ZCOMP (sec.) Heuristics (sec.) Total (sec.)

4 x 10° 0.39 1.02 1.41
8 x 10° 0.76 1.38 2.14
12 x 10° 1.08 1.41 2.49
16 x 10° 1.36 1.10 2.46
20 x 10° 1.60 0.33 1.93
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Experiment: Artificial dataset

@ The number of variables n = 25, in which 13 take continuous values
and 12 take discrete ones.

@ The number of constraints m = k x 10°, where k € {4,8,12,16,20}.

Mem. consumption [MB] Computation time [sec]
103,
103,
102,
0.5 1.0 1.5 0.5 1.0 1.5
# of constraints 1e6 # of constraints 1e
—=— mip —=— nzdd_mip
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Experiment: Real dataset

@ Solves Li-norm regularized soft margin optimization problem.

@ The # of constraints equals to the # of variables.
e Cannot reduce the # of constraints by our extended formulation.

e Solves an approximate problem.
o We verified its effectiveness by measuring test loss.

@ The dataset is from LIBSVM2.

Computation time

103 B nzdd naive
T 102 Il naive
9]
0]
— 10!
g
-4 10°
=

107t

a9a art-1le5 real-sim w8a HIGGS
Datasets

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Conclusion

@ Proposed a general algorithm to generate an extended formulation
from a given linear constraints.
o Experimental results demonstrate its effectiveness.

@ Sometimes the construction time for an NZDD is problematic.
o Are there any effective construction for NZDDs?
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