Extended formulations via decision diagrams

Yuta Kurokawa¹ Ryotaro Mitsuboshi^{1,2} Haruki Hamasaki¹ Kohei Hatano^{1,2} Eiji Takimoto¹ Holakou Rahmanian³

¹Kyushu University

²RIKEN AIP

³Amazon

[COCOON 2023]

Consider the optimization problems of the form:

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{subject to} \quad A\boldsymbol{x} \geq \boldsymbol{b},$$
$$\boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}'$$

where $A \in \{0,1\}^{m \times n}$, $\boldsymbol{b} \in \{0,1\}^m$, $f : \mathbb{R}^n \to \mathbb{R}$ is an arbitrary function, and \mathcal{X} represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.

Parallel to the development of computers, *m* becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.

Consider the optimization problems of the form:

$$\min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad A\mathbf{x} \ge \mathbf{b},$$
$$\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^{r}$$

where $A \in \{0,1\}^{m \times n}$, $\boldsymbol{b} \in \{0,1\}^m$, $f : \mathbb{R}^n \to \mathbb{R}$ is an arbitrary function, and \mathcal{X} represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients. Parallel to the development of computers, *m* becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.

Consider the optimization problems of the form:

$$\min_{\mathbf{x}} f(\mathbf{x}) \quad \text{subject to} \quad A\mathbf{x} \ge \mathbf{b},$$
$$\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^{r}$$

where $A \in \{0,1\}^{m \times n}$, $\boldsymbol{b} \in \{0,1\}^m$, $f : \mathbb{R}^n \to \mathbb{R}$ is an arbitrary function, and \mathcal{X} represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients. Parallel to the development of computers, *m* becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.

A class of methods that reduces the number of constraints by slightly increasing the number of variables.

- Original (2-dim. space)
 - 2 variables,
 - 6 constraints.
- Ext. form. (3-dim. space)
 - 3 variables,
 - 5 constraints.

Sketch

Establish Extended formulation

s.t. $A' \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{v} \end{bmatrix} \geq \boldsymbol{b}',$

 $\mathbf{x} \subset \mathcal{X}$

Hopefully, the number of constraints significantly dec

Sketch

Establish Extended formulation

 $\min_{x} f(x)$ s.t. $A' \begin{bmatrix} x \\ y \end{bmatrix} \ge b',$ $x \subset \mathcal{X}$

Hopefully, the number of constraints significantly decreases, while the number of variables slightly increases.

Sketch

Hopefully, the number of constraints significantly decreases, while the number of variables slightly increases.

- Bergman et al. represent a feasible region by ZDD and reduce a discrete optimization problem to the shortest path problem over the ZDD_[Bregman et al., '16].
- Fujita et al. emulate AdaBoostV[Rätsch et al., '05] over an NZDD[Fujita et al., '20].

Our contribution

• Generates an extended formulation algorithmically.

Input: optimization problem with lineaer constraints. Output: an equiv. optimization problem with fewer constraints.

• our method can solve the continuous optimization problem.

Non-deterministic Zero-suppressed Decision Diagram

A data structure that represents a subset family.

Definition (NZDD [Fujita et al., '13])

An NZDD G is a quadruple (V, E, Σ, ψ) where

- (V, E) is a DAG with a single root and single leaf,
- Σ is the ground set,
- ψ : E → 2^Σ labels each edge e ∈ E with a subset ψ(e) ⊂ Σ
 s.t. ∀ root-leaf path P ⊂ E, ∀e₁, e₂ ∈ P, ψ(e₁) ∩ ψ(e₂) = Ø.
- G represents the subset family $\{\bigcup_{e \in P} \psi(e) \mid P \text{ is a root-leaf path}\}$

The left NZDD represents the family $\{\{a, b, c\}, \{b\}, \{b, c, d\}, \{c, d\}\}$. The red path represents $\{b, c, d\}$.

We have linear constraints $A\mathbf{x} \ge \mathbf{b}$, where $A \in \{0, 1\}^{m \times n}$ and $\mathbf{b} \in \{0, 1\}^m$. Let $\mathbf{a}_i \cdot \mathbf{x} \ge b_i$ be the *i*th row of $A\mathbf{x} \ge \mathbf{b}$.

- Pick a constraint $a_i \cdot x \ge b_i$. **Ex.** $x_1 + x_2 + x_4 \ge 1$.
- ② Construct a vector $c_i := \begin{bmatrix} a_i & b_i \end{bmatrix} \in \{0, 1\}^{n+1}$. **Ex.** $c_i = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \end{bmatrix}$.
- **③** Collect the non-zero indices Ix(c) = { $j \in [n + 1] | c_j = 1$ }. **Ex.** Ix(c_i) = {1,2,4,5}.

We have linear constraints $A\mathbf{x} \ge \mathbf{b}$, where $A \in \{0, 1\}^{m \times n}$ and $\mathbf{b} \in \{0, 1\}^m$. Let $\mathbf{a}_i \cdot \mathbf{x} \ge b_i$ be the *i*th row of $A\mathbf{x} \ge \mathbf{b}$.

- Pick a constraint $\mathbf{a}_i \cdot \mathbf{x} \ge b_i$. **Ex.** $x_1 + x_2 + x_4 \ge 1$.
- ② Construct a vector $c_i := \begin{bmatrix} a_i & b_i \end{bmatrix} \in \{0, 1\}^{n+1}$. **Ex.** $c_i = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \end{bmatrix}$.
- **③** Collect the non-zero indices Ix(c) = { $j \in [n + 1] | c_j = 1$ }. **Ex.** Ix(c_i) = {1,2,4,5}.

We have linear constraints $A\mathbf{x} \ge \mathbf{b}$, where $A \in \{0, 1\}^{m \times n}$ and $\mathbf{b} \in \{0, 1\}^m$. Let $\mathbf{a}_i \cdot \mathbf{x} \ge b_i$ be the *i*th row of $A\mathbf{x} \ge \mathbf{b}$.

• Pick a constraint
$$\mathbf{a}_i \cdot \mathbf{x} \ge b_i$$
.
Ex. $x_1 + x_2 + x_4 \ge 1$.

② Construct a vector $c_i := \begin{bmatrix} a_i & b_i \end{bmatrix} \in \{0, 1\}^{n+1}$.
Ex. $c_i = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \end{bmatrix}$.

③ Collect the non-zero indices Ix(c) = { $j \in [n + 1] | c_j = 1$ }. Ex. Ix(c_i) = {1,2,4,5}.

We have linear constraints $A\mathbf{x} \ge \mathbf{b}$, where $A \in \{0, 1\}^{m \times n}$ and $\mathbf{b} \in \{0, 1\}^m$. Let $\mathbf{a}_i \cdot \mathbf{x} \ge b_i$ be the *i*th row of $A\mathbf{x} \ge \mathbf{b}$.

• Pick a constraint
$$\mathbf{a}_i \cdot \mathbf{x} \ge b_i$$
.
Ex. $x_1 + x_2 + x_4 \ge 1$.

- **②** Construct a vector $c_i := \begin{bmatrix} a_i & b_i \end{bmatrix} \in \{0, 1\}^{n+1}$.
 Ex. $c_i = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \end{bmatrix}$.
- Collect the non-zero indices $Ix(c) = \{j \in [n+1] \mid c_j = 1\}.$ Ex. $Ix(c_i) = \{1, 2, 4, 5\}.$

We have linear constraints $A\mathbf{x} \ge \mathbf{b}$, where $A \in \{0, 1\}^{m \times n}$ and $\mathbf{b} \in \{0, 1\}^m$. Let $\mathbf{a}_i \cdot \mathbf{x} \ge b_i$ be the *i*th row of $A\mathbf{x} \ge \mathbf{b}$.

• Pick a constraint
$$\mathbf{a}_i \cdot \mathbf{x} \ge b_i$$
.
Ex. $x_1 + x_2 + x_4 \ge 1$.

- ② Construct a vector $c_i := \begin{bmatrix} a_i & b_i \end{bmatrix} \in \{0, 1\}^{n+1}$.
 Ex. $c_i = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \end{bmatrix}$.
- Collect the non-zero indices $Ix(c) = \{j \in [n+1] | c_j = 1\}.$ Ex. $Ix(c_i) = \{1, 2, 4, 5\}.$

Our approach (2/3)

Establish an extended formulation from an NZDD. We can reproduce the original constraints $Ax \ge b$.

• Define variables
$$\{s_v \mid v \in V\}$$
.

② For each edge
$$(p,q) \in E \subset V \times V$$
, define a constraint $s_p + \sum_{i \in \psi((p,q))} \operatorname{sgn}(i) x_i \ge s_q$, where $\operatorname{sgn} : [n+1] \rightarrow \{\pm 1\}$ is the function s.t. $\operatorname{sgn}(i) = 1 \iff i \neq n+1$.
Ex.

$$\underbrace{\left[\begin{array}{cccccccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & -1 \\ \end{array}\right]_{=:A'} \xrightarrow{X_1} = X'$$

$$\begin{cases} 1 \\ \{1\} \\ \{3\} \\ u \\ \{5\} \\ \ell \\ \{4, 5\} \end{cases}$$

Ex.
 $s_r + x_1 + x_2 \ge s_u,$
 $s_u + x_4 - x_5 \ge s_\ell.$

> 0

Our approach (3/3)

Consider the opposite direction.

If
$$\boldsymbol{x}$$
 satisfies $A\boldsymbol{x} \geq \boldsymbol{b}, \qquad \exists \boldsymbol{s} \in \mathbb{R}^V_+ \text{ s.t. } A' \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{s} \end{bmatrix} \geq \boldsymbol{0}.$

Let \boldsymbol{x} be a vector satisfying original constraints $A\boldsymbol{x} \geq \boldsymbol{b}$.

• For each edge
$$e \in E$$
, assign weight $\sum_{i \in \psi(e)} \operatorname{sgn}(i) x_i$.

Por each vertex v ∈ V, set s_v to the shortest path length from root to v.

③ The resulting vector $\boldsymbol{s} \in \mathbb{R}^V_+$ satisfies

$$A'\begin{bmatrix} m{x}\\m{s}\end{bmatrix}\geq m{0}$$

Satisfying $A\mathbf{x} \ge \mathbf{b} \iff$ the corresponding path length ≥ 0

$$\{1\} \\ \{3\} \\ \{5\} \\ \ell \\ \{4,5\} \\ \ell \\ \{4,5\} \\ \ell \\ \{1,2\}$$

Main result

Theorem

- Let $A' \begin{bmatrix} x \\ s \end{bmatrix} \ge 0'$ be the constraints constructed from $Ax \ge b$. Then, the constraints represent the same feasible region in terms of x.
- One can find the optimal solution to the original problem from the compressed one.

Let
$$G = (V, E, \Sigma, \Psi)$$
 be the NZDD for the compressed problem.

- # of constraints: O(|E|),
- # of variables: O(n + |V|).

Thus, constructing a small NZDD in the sense the number of edges highly reduces the constraints.

Main result

Theorem

- Let $A' \begin{bmatrix} x \\ s \end{bmatrix} \ge 0'$ be the constraints constructed from $Ax \ge b$. Then, the constraints represent the same feasible region in terms of x.
- One can find the optimal solution to the original problem from the compressed one.

Let $G = (V, E, \Sigma, \Psi)$ be the NZDD for the compressed problem.

- # of constraints: O(|E|),
- # of variables: O(n + |V|).

Thus, constructing a small NZDD in the sense the number of edges highly reduces the constraints.

- No good algorithms known to construct a concise NZDD from a given subset family.
- ZCOMP¹ [Toda, '15], a tool for constructing ZDDs is available.

Currently, we use the following procedure:

- Construct a ZDD by ZCOMP.
- Contract edges to remove all nodes with 1 indegree or 1 outdegree. (Heuristics)

¹http://www.sd.is.uec.ac.jp/toda/code/zcomp.html

- # of variables n = 25.
- Each row of the linear constraints has 10 non-zero entries.

m	ZCOMP (sec.)	Heuristics (sec.)	Total (sec.)
$4 imes 10^5$	0.39	1.02	1.41
$8 imes 10^5$	0.76	1.38	2.14
$12 imes 10^5$	1.08	1.41	2.49
$16 imes 10^5$	1.36	1.10	2.46
$20 imes 10^5$	1.60	0.33	1.93

Experiment: Artificial dataset

- The number of variables *n* = 25, in which 13 take continuous values and 12 take discrete ones.
- The number of constraints $m = k \times 10^5$, where $k \in \{4, 8, 12, 16, 20\}$.

Experiment: Real dataset

- Solves *L*₁-norm regularized soft margin optimization problem.
- The # of constraints equals to the # of variables.
 - Cannot reduce the # of constraints by our extended formulation.
 - Solves an approximate problem.
 - We verified its effectiveness by measuring test loss.
- The dataset is from LIBSVM².

²https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Kurokawa et al.	Extended formulations via DD	[COCOON 2023]	14 / 15

- Proposed a general algorithm to generate an extended formulation from a given linear constraints.
- Experimental results demonstrate its effectiveness.
- Sometimes the construction time for an NZDD is problematic.
 - Are there any effective construction for NZDDs?