Extended formulations via decision diagrams

Yuta Kurokawa ${ }^{1} \quad$ Ryotaro Mitsuboshi ${ }^{1,2}$ Haruki Hamasaki ${ }^{1}$ Kohei Hatano ${ }^{1,2}$ Eiji Takimoto ${ }^{1}$ Holakou Rahmanian ${ }^{3}$
${ }^{1}$ Kyushu University
${ }^{2}$ RIKEN AIP
${ }^{3}$ Amazon
[COCOON 2023]

Background and motivation

Consider the optimization problems of the form:

$$
\begin{array}{ll}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b} \\
& \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^{n}
\end{array}
$$

where $A \in\{0,1\}^{m \times n}, \boldsymbol{b} \in\{0,1\}^{m}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an arbitrary function, and \mathcal{X} represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.
Parallel to the development of computers,
m becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.

Background and motivation

Consider the optimization problems of the form:

$$
\begin{array}{ll}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b} \\
& \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^{n}
\end{array}
$$

where $A \in\{0,1\}^{m \times n}, \boldsymbol{b} \in\{0,1\}^{m}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an arbitrary function, and \mathcal{X} represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.
Parallel to the development of computers, m becomes enormous.

Background and motivation

Consider the optimization problems of the form:

$$
\begin{array}{ll}
\min _{\boldsymbol{x}} f(\boldsymbol{x}) \text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b} \\
& \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^{n}
\end{array}
$$

where $A \in\{0,1\}^{m \times n}, \boldsymbol{b} \in\{0,1\}^{m}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an arbitrary function, and \mathcal{X} represents other constraints, e.g., discrete or semidefinite, etc.

Ex. LP, QP, IP, and SDP with binary coefficients.
Parallel to the development of computers, m becomes enormous.

Our goal

Generate an equivalent formulation with a smaller problem size.

Extended formulation

A class of methods that reduces the number of constraints by slightly increasing the number of variables.

- Original (2-dim. space)
- 2 variables,
- 6 constraints.
- Ext. form. (3-dim. space)
- 3 variables,
- 5 constraints.

Sketch

Original formulation

$\min _{\boldsymbol{x}} f(\boldsymbol{x})$
s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$, $\boldsymbol{x} \subset \mathcal{X}$

Construct NZDD

representation

Each path

corresponds to a constraint in $A \boldsymbol{x} \geq \boldsymbol{b}$.

Establish

Extended formulation

Hopefully, the number of constraints significantly decreases, while the number of variables slightly increases.

Sketch

Original formulation

$\min _{x} f(x)$
s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$,

$$
x \subset \mathcal{X}
$$

Construct NZDD representation

Each path
corresponds to a constraint in $A \boldsymbol{x} \geq \boldsymbol{b}$.

Establish

Extended formulation

Hopefully, the number of constraints significantly decreases,
while the number of variables slightly increases.

Sketch

Original formulation

s.t. $A \boldsymbol{x} \geq \boldsymbol{b}$,

$$
x \subset \mathcal{X}
$$

Construct NZDD representation

Each path
corresponds to a constraint in $A \boldsymbol{x} \geq \boldsymbol{b}$.

Establish
Extended formulation

$$
\begin{aligned}
& \min _{\boldsymbol{x}} f(\boldsymbol{x}) \\
& \text { s.t. } A^{\prime}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y}
\end{array}\right] \geq \boldsymbol{b}^{\prime}, \\
& \boldsymbol{x} \subset \mathcal{X}
\end{aligned}
$$

Hopefully, the number of constraints significantly decreases, while the number of variables slightly increases.

Related work and our contribution

- Bergman et al. represent a feasible region by ZDD and reduce a discrete optimization problem to the shortest path problem over the ZDD ${ }_{\text {[Bregman et al., }{ }^{16]} \text {. }}$
- Fujita et al. emulate $\mathrm{AdaBoost}^{\text {[Rätsch et al., '05] }}$ over an $\mathrm{NZDD}_{[\text {[Fujita et al., ' } 20]}$.

Our contribution

- Generates an extended formulation algorithmically.

Input: optimization problem with lineaer constraints.
Output: an equiv. optimization problem with fewer constraints.

- our method can solve the continuous optimization problem.

Non-deterministic Zero-suppressed Decision Diagram

A data structure that represents a subset family.

Definition (NZDD [Fuijta et al., '13])

An NZDD G is a quadruple (V, E, Σ, ψ) where

- (V, E) is a DAG with a single root and single leaf,
- Σ is the ground set,
- $\psi: E \rightarrow 2^{\Sigma}$ labels each edge $e \in E$ with a subset $\psi(e) \subset \Sigma$ s.t. \forall root-leaf path $P \subset E, \forall e_{1}, e_{2} \in P, \psi\left(e_{1}\right) \cap \psi\left(e_{2}\right)=\emptyset$.
- G represents the subset family $\left\{\bigcup_{e \in P} \psi(e) \mid P\right.$ is a root-leaf path $\}$

Ex.

The left NZDD represents the family $\{\{a, b, c\},\{b\},\{b, c, d\},\{c, d\}\}$.
The red path represents $\{b, c, d\}$.

Our approach ($1 / 3$)

Convert the constraints to the subset family of indices. We have linear constraints $A \boldsymbol{x} \geq \boldsymbol{b}$, where $A \in\{0,1\}^{m \times n}$ and $\boldsymbol{b} \in\{0,1\}^{m}$. Let $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$ be the ith row of $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) Pick a constraint $a_{i} \cdot x \geq b_{i}$

(0) Collect the non-zero indices $\operatorname{Ix}(\boldsymbol{c})=\left\{j \in[n+1] \mid c_{j}=1\right\}$
$\operatorname{Ex.} . \operatorname{Ix}\left(c_{i}\right)=\{1,2,4,5\}$.

At this point, we have $\mathcal{C}=\left\{\operatorname{Ix}\left(\boldsymbol{c}_{i}\right) \left\lvert\, \boldsymbol{c}_{i}=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right]\right., i \in[m]\right\}$
Now we construct an NZDD that represents \mathcal{C}.

Our approach ($1 / 3$)

Convert the constraints to the subset family of indices. We have linear constraints $A \boldsymbol{x} \geq \boldsymbol{b}$, where $A \in\{0,1\}^{m \times n}$ and $\boldsymbol{b} \in\{0,1\}^{m}$. Let $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$ be the ith row of $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) Pick a constraint $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$.

Ex. $x_{1}+x_{2}+x_{4} \geq 1$.
(3) Construct a vector $c_{i}:=\left[\begin{array}{ll}a_{i} & b_{i}\end{array}\right] \in\{0,1\}^{n+1}$
(0) Collect the non-zero indices

At this point, we have $\mathcal{C}=\left\{\operatorname{Ix}\left(\boldsymbol{c}_{i}\right) \left\lvert\, \boldsymbol{c}_{i}=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right]\right., i \in[m]\right\}$
Now we construct an NZDD that represents \mathcal{C}.

Our approach ($1 / 3$)

Convert the constraints to the subset family of indices.
We have linear constraints $A \boldsymbol{x} \geq \boldsymbol{b}$, where $A \in\{0,1\}^{m \times n}$ and $\boldsymbol{b} \in\{0,1\}^{m}$. Let $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$ be the ith row of $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) Pick a constraint $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$.

Ex. $x_{1}+x_{2}+x_{4} \geq 1$.
(2) Construct a vector $\boldsymbol{c}_{i}:=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right] \in\{0,1\}^{n+1}$. Ex. $\boldsymbol{c}_{i}=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]$.
(3) Collect the non-zero indices

At this point, we have $\mathcal{C}=\left\{\operatorname{Ix}\left(\boldsymbol{c}_{i}\right) \left\lvert\, \boldsymbol{c}_{i}=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right]\right., i \in[m]\right\}$ Now we construct an NZDD that represents \mathcal{C}.

Our approach ($1 / 3$)

Convert the constraints to the subset family of indices.
We have linear constraints $A \boldsymbol{x} \geq \boldsymbol{b}$, where $A \in\{0,1\}^{m \times n}$ and $\boldsymbol{b} \in\{0,1\}^{m}$. Let $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$ be the ith row of $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) Pick a constraint $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$.

Ex. $x_{1}+x_{2}+x_{4} \geq 1$.
(2) Construct a vector $\boldsymbol{c}_{i}:=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right] \in\{0,1\}^{n+1}$. Ex. $\boldsymbol{c}_{i}=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]$.
(3) Collect the non-zero indices
$\operatorname{Ix}(\boldsymbol{c})=\left\{j \in[n+1] \mid c_{j}=1\right\}$.
Ex. $\operatorname{Ix}\left(\boldsymbol{c}_{\boldsymbol{i}}\right)=\{1,2,4,5\}$.
At this point, we have $\mathcal{C}=\left\{\operatorname{Ix}\left(\boldsymbol{c}_{i}\right) \left\lvert\, \boldsymbol{c}_{i}=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right]\right., i \in[m]\right\}$
Now we construct an NZDD that represents \mathcal{C}.

Our approach ($1 / 3$)

Convert the constraints to the subset family of indices.
We have linear constraints $A \boldsymbol{x} \geq \boldsymbol{b}$, where $A \in\{0,1\}^{m \times n}$ and $\boldsymbol{b} \in\{0,1\}^{m}$. Let $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$ be the ith row of $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) Pick a constraint $\boldsymbol{a}_{i} \cdot \boldsymbol{x} \geq b_{i}$.

Ex. $x_{1}+x_{2}+x_{4} \geq 1$.
(2) Construct a vector $\boldsymbol{c}_{i}:=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right] \in\{0,1\}^{n+1}$. Ex. $\boldsymbol{c}_{i}=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]$.
(3) Collect the non-zero indices
$\operatorname{Ix}(\boldsymbol{c})=\left\{j \in[n+1] \mid c_{j}=1\right\}$.
Ex. $\operatorname{Ix}\left(\boldsymbol{c}_{\boldsymbol{i}}\right)=\{1,2,4,5\}$.

At this point, we have $\mathcal{C}=\left\{\operatorname{Ix}\left(\boldsymbol{c}_{i}\right) \left\lvert\, \boldsymbol{c}_{i}=\left[\begin{array}{ll}\boldsymbol{a}_{i} & b_{i}\end{array}\right]\right., i \in[m]\right\}$. Now we construct an NZDD that represents \mathcal{C}.

Our approach (2/3)

Establish an extended formulation from an NZDD.

We can reproduce the original constraints $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) Define variables $\left\{s_{v} \mid v \in V\right\}$.
(2) For each edge $(p, q) \in E \subset V \times V$, define a constraint $s_{p}+\sum_{i \in \psi((p, q))} \operatorname{sgn}(i) x_{i} \geq s_{q}$, where sgn : $[n+1] \rightarrow\{ \pm 1\}$ is the function s.t.
$\operatorname{sgn}(i)=1 \Longleftrightarrow i \neq n+1$.

$$
\begin{aligned}
& \text { Ex. } \\
& \underbrace{\left[\begin{array}{ccccc|cccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & -1
\end{array}\right]}_{=: A^{\prime}}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{5} \\
s_{r} \\
s_{u} \\
s_{v} \\
s_{\ell}
\end{array}\right] \geq \mathbf{l} \begin{array}{l}
\text { Ex. } \\
s_{r}+x_{1}+x_{2} \geq s_{u}, \\
s_{u}+x_{4}-x_{5} \geq s_{\ell} .
\end{array}
\end{aligned}
$$

Our approach (3/3)

Consider the opposite direction.

$$
\text { If } \boldsymbol{x} \text { satisfies } A \boldsymbol{x} \geq \boldsymbol{b}, \quad \exists \boldsymbol{s} \in \mathbb{R}_{+}^{V} \text { s.t. } A^{\prime}\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{s}
\end{array}\right] \geq \mathbf{0}
$$

Let \boldsymbol{x} be a vector satisfying original constraints $A \boldsymbol{x} \geq \boldsymbol{b}$.
(1) For each edge $e \in E$, assign weight $\sum_{i \in \psi(e)} \operatorname{sgn}(i) x_{i}$.
(2) For each vertex $v \in V$, set s_{v} to the shortest path length from root to v.
(3) The resulting vector $\boldsymbol{s} \in \mathbb{R}_{+}^{V}$ satisfies

$$
A^{\prime}\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{s}
\end{array}\right] \geq \mathbf{0}
$$

Satisfying $A \boldsymbol{x} \geq \boldsymbol{b} \Longleftrightarrow$ the corresponding path length ≥ 0

Main result

Theorem

- Let $A^{\prime}\left[\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{s}\end{array}\right] \geq \mathbf{0}^{\prime}$ be the constraints constructed from $A \boldsymbol{x} \geq \boldsymbol{b}$. Then, the constraints represent the same feasible region in terms of \boldsymbol{x}.
- One can find the optimal solution to the original problem from the compressed one.

Let $G=(V, E, \Sigma, \Psi)$ be the NZDD for the

compressed problem.

- II of constraints: $O(|E|)$,
- \# of variables: $O(n+|V|)$

Thus, constructing a small NZDD in the sense the number of edges highly reduces the constraints.

Main result

Theorem

- Let $A^{\prime}\left[\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{s}\end{array}\right] \geq \mathbf{0}^{\prime}$ be the constraints constructed from $A \boldsymbol{x} \geq \boldsymbol{b}$. Then, the constraints represent the same feasible region in terms of \boldsymbol{x}.
- One can find the optimal solution to the original problem from the compressed one.

Let $G=(V, E, \Sigma, \Psi)$ be the NZDD for the compressed problem.

- \# of constraints: $O(|E|)$,
- \# of variables: $O(n+|V|)$.

Thus, constructing a small NZDD in the sense the number of edges highly reduces the constraints.

Construction of NZDD

- No good algorithms known to construct a concise NZDD from a given subset family.
- ZCOMP ${ }^{1}$ [Toda, '15], a tool for constructing ZDDs is available.

Currently, we use the following procedure:
(1) Construct a ZDD by ZCOMP.
(2) Contract edges to remove all nodes with 1 indegree or 1 outdegree. (Heuristics)

[^0]
Experiment: NZDD construction

- \# of variables $n=25$.
- Each row of the linear constraints has 10 non-zero entries.

m	ZCOMP (sec.)	Heuristics (sec.)	Total (sec.)
4×10^{5}	0.39	1.02	1.41
8×10^{5}	0.76	1.38	2.14
12×10^{5}	1.08	1.41	2.49
16×10^{5}	1.36	1.10	2.46
20×10^{5}	1.60	0.33	1.93

Experiment: Artificial dataset

- The number of variables $n=25$, in which 13 take continuous values and 12 take discrete ones.
- The number of constraints $m=k \times 10^{5}$, where $k \in\{4,8,12,16,20\}$.

$$
\longrightarrow \operatorname{mip} \quad \longrightarrow \text { nzdd_mip }
$$

Experiment: Real dataset

- Solves L_{1}-norm regularized soft margin optimization problem.
- The \# of constraints equals to the \# of variables.
- Cannot reduce the \# of constraints by our extended formulation.
- Solves an approximate problem.
- We verified its effectiveness by measuring test loss.
- The dataset is from LIBSVM ${ }^{2}$.

Computation time

[^1]
Conclusion

- Proposed a general algorithm to generate an extended formulation from a given linear constraints.
- Experimental results demonstrate its effectiveness.
- Sometimes the construction time for an NZDD is problematic.
- Are there any effective construction for NZDDs?

[^0]: ${ }^{1}$ http://www.sd.is.uec. ac. jp/toda/code/zcomp.html

[^1]: ${ }^{2}$ https://www.csie.ntu.edu.tw/~cjlin/libsvm/

